91 research outputs found

    Encasement as a morphogenetic mechanism: The case of bending

    Get PDF
    We study how the encasement of a growing elastic bulk within a possibly differently growing elastic coat may induce mechanical instabilities in the equilibrium shape of the combined body. The inhomogeneities induced in an incompressible bulk during growth are also discussed. These effects are illustrated through a simple example in which a growing elastic cylinder may undergo a shape transition towards a bent configuration.Comment: 17 pages, 3 figure

    New activity pattern in human interactive dynamics

    Full text link
    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new universal pattern for how the reactive dynamics of individuals is distributed across the set of each agent's contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this universal behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one's environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.Comment: 15 pages, 7 figure

    Intermittency in crystal plasticity informed by lattice symmetry

    Get PDF
    We develop a nonlinear, three-dimensional phase field model for crystal plasticity which accounts for the infinite and discrete symmetry group G of the underlying periodic lattice. This generates a complex energy landscape with countably-many G-related wells in strain space, whereon the material evolves by energy minimization under the loading through spontaneous slip processes inducing the creation and motion of dislocations without the need of auxiliary hypotheses. Multiple slips may be activated simultaneously, in domains separated by a priori unknown free boundaries. The wells visited by the strain at each position and time, are tracked by the evolution of a G-valued discrete plastic map, whose non-compatible discontinuities identify lattice dislocations. The main effects in the plasticity of crystalline materials at microscopic scales emerge in this framework, including the long-range elastic fields of possibly interacting dislocations, lattice friction, hardening, band-like vs. complex spatial distributions of dislocations. The main results concern the scale-free intermittency of the flow, with power-law exponents for the slip avalanche statistics which are significantly affected by the symmetry and the compatibility properties of the activated fundamental shears.Comment: 13 pages, 4 figure

    Strain intermittency in shape-memory alloys

    Get PDF
    We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in- house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.Comment: Four supplementary video

    Ericksen-Landau Modular Strain Energies for Reconstructive Phase Transformations in 2D crystals

    Get PDF
    By using modular functions on the upper complex half-plane, we study a class of strain energies for crystalline materials whose global invariance originates from the full symmetry group of the underlying lattice. This follows Ericksen's suggestion which aimed at extending the Landau-type theories to encompass the behavior of crystals undergoing structural phase transformation, with twinning, microstructure formation, and possibly associated plasticity effects. Here we investigate such Ericksen-Landau strain energies for the modelling of reconstructive transformations, focusing on the prototypical case of the square-hexagonal phase change in 2D crystals. We study the bifurcation and valley-floor network of these potentials, and use one in the simulation of a quasi-static shearing test. We observe typical effects associated with the micro-mechanics of phase transformation in crystals, in particular, the bursty progression of the structural phase change, characterized by intermittent stress-relaxation through microstructure formation, mediated, in this reconstructive case, by defect nucleation and movement in the lattice.Comment: 17 pages, 6 figures, links to 4 supplementary video

    Human Homosexuality: A Paradigmatic Arena for Sexually Antagonistic Selection?

    Get PDF
    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait

    Origin of scale-free intermittency in structural first-order phase transitions

    Get PDF
    Acknowledgments FJPR acknowledges the financial support from the Carnegie Trust. LT acknowledges the financial support from the french ANR grant EVOCRIT.Peer reviewedPostprin

    Training-induced criticality in martensites

    Full text link
    We propose an explanation for the self-organization towards criticality observed in martensites during the cyclic process known as `training'. The scale-free behavior originates from the interplay between the reversible phase transformation and the concurrent activity of lattice defects. The basis of the model is a continuous dynamical system on a rugged energy landscape, which in the quasi-static limit reduces to a sandpile automaton. We reproduce all the principal observations in thermally driven martensites, including power-law statistics, hysteresis shakedown, asymmetric signal shapes, and correlated disorder.Comment: 5 pages, 4 figure

    Crystal elasto-plasticity on the Poincar\'e half-plane

    Full text link
    We explore the nonlinear variational modelling of two-dimensional (2D) crystal plasticity based on strain energies which are invariant under the full symmetry group of 2D lattices. We use a natural parameterization of strain space via the upper complex Poincar\'e half-plane. This transparently displays the constraints imposed by lattice symmetry on the energy landscape. Quasi-static energy minimization naturally induces bursty plastic flow and shape change in the crystal due to the underlying coordinated basin-hopping local strain activity. This is mediated by the nucleation, interaction, and annihilation of lattice defects occurring with no need for auxiliary hypotheses. Numerical simulations highlight the marked effect of symmetry on all these processes. The kinematical atlas induced by symmetry on strain space elucidates how the arrangement of the energy extremals and the possible bifurcations of the strain-jump paths affect the plastification mechanisms and defect-pattern complexity in the lattice.Comment: 24 pages, 4 figure
    • …
    corecore